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Abstract

Frailty (a syndrome resulting in reduced physical function) assessments and fall risk
assessments rely heavily on in-person evaluations and subjective interpretation, limiting
scalability and access. Markerless motion capture (MMC) offers a promising solution for
remote, objective assessment, but key kinematic parameters associated with frailty and fall
risk remain unclear. This scoping review synthesized evidence from MEDLINE, Embase,
Scopus, and CINAHL (inception to October 2024). Eligible studies used MMC to assess
adults and compared outcomes to validated frailty or fall risk measures. Of 8048 studies,
39 met the inclusion criteria: 30 evaluated fall risk, 7 evaluated frailty, and 2 evaluated both,
including 3114 participants (mean age 75.8; 42% male). Microsoft Kinect was used in 75%
of the studies. An average of 23 features was extracted per study. Gait analysis was the
most common MMC assessment for fall risk, identifying gait speed, stride length, and step
width as key parameters. Frailty-related features were less consistent, with two studies
identifying power, speed degradation, power reduction, range of motion, and elbow
flexion time during a 20 s arm test. Future studies require standardization of methods and
improved reporting of data loss. Despite the emerging nature of the field, MMC shows
potential for the identification of fall risk and frailty.

Keywords: fall risk; frailty; digital health; markerless motion capture; kinematics

1. Introduction

Frailty is a clinical syndrome characterized by reduced physical function and im-
paired health that increases in prevalence as individuals age [1,2]. It is associated with
increased morbidity and mortality [3,4], hospitalization, and financial burden on healthcare
systems [5,6]. Falls, closely linked to aging, affect approximately one-third of older adults
annually [7], with fall risk influenced by many factors [8]. Frailty and fall risk frequently
co-occur and are two of the most common geriatric syndromes among community-dwelling
adults [7,9]. As the global population ages, both frailty and fall risk are growing public
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health concerns. In Canada, fall rates among adults aged 65 years and older have risen,
with a 111% increase in fall-related mortality between 2001 and 2019 [10]. Frail individuals
are at an increased risk of falling compared to their non-frail peers [11,12]. Furthermore,
frail individuals have a higher likelihood of serious injury, fracture, and mortality following
a fall [13,14]. Both frailty and falls influence each other [15] in that falls can precipitate
a “fear of falling” that leads to decreased physical activity, fueling further muscle loss
and advancing frailty, and, in turn, a greater risk of falls [16]. Evidence suggests that by
examining these conditions together, there is more accurate risk stratification, facilitating
highly targeted interventions that optimize patient outcomes [16,17]. Indeed, interventions
in individuals at risk of frailty and falls have been shown to reduce healthcare burden and
improve quality of life [18-20].

Frailty and fall risk are most commonly assessed using a range of self-report or
performance-based approaches [21]. The absence of a single, standardized reference method
has contributed to substantial variability in how these conditions are measured [21,22].
Given that impairments in physical function underpin both frailty and fall risk [23,24], this
creates an opportunity to improve evaluation through objective, sensitive, and standardized
assessment tools grounded in physical function [21,25].

Technologies capable of objectively capturing movement offer a promising approach
forward. While marker-based motion capture remains the “gold standard” of optical
motion tracking technology, it is limited by the need for specialized equipment (e.g.,
multiple infrared cameras) at high costs, time-intensive setups with large physical space
requirements, and mobility limitations during testing [26,27]. Inertial measurement units
(IMUs), which collect data from an accelerometry sensor (or sensors) placed on the body;,
also provide a valuable movement signal. However, they can be susceptible to drift and
signal noise, which can affect measurement accuracy in some settings [28].

Markerless motion capture (MMC) has emerged as a scalable and accessible alternative.
By using simple cameras in conjunction with pose estimation algorithms, MMC eliminates
the need for physical markers or sensors. Its compatibility with smartphones and other
devices [29] enhances its feasibility for clinical and in-home settings [30]. One of the most
widely used MMC tools is the Kinect [31], a consumer-grade motion sensing device that was
originally developed for video game applications [32]. The Kinect integrates an RGB camera,
a depth sensor, and sound capture, allowing simultaneous collection of multimodal data.
This versatility has supported its adoption in both research and clinical settings [33].

Evaluating whether MMC can achieve accuracy comparable to established motion
capture methods has been a central focus of validation studies. A recent meta-analysis of
22 studies found that MMC demonstrates excellent inter-rater reliability for key spatiotem-
poral gait parameters (intraclass correlation coefficient (ICC) = 0.81-0.99) and excellent
concurrent validity (ICC = 0.98) when compared with marker-based motion capture [34].
Similarly, a systematic review of 20 studies reported high agreement between MMC and
marker-based systems, particularly for spatiotemporal outcomes, further reinforcing the
robustness of these findings [35]. IMUs can provide high precision for specific metrics, such
as lower limb joint angles, but they are less reliable for capturing complex movements or
multiplane joint rotations—an area where MMC performs particularly well [36]. Balancing
accessibility and robust accuracy, MMC represents a practical tool for clinical application.

Moreover, MMC enables the extraction of kinematic features—quantitative descriptors
of movement (e.g., speed, step length, joint angles, or timing parameters) derived from
temporospatial data. These features act as digital biomarkers, translating raw motion capture
into objective and clinically interpretable indicators of physical function [37]. They have
demonstrated relevance across a range of health conditions, including frailty and fall risk [38].
For example, shorter step length and slower speed-to-sit times distinguish individuals at
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higher versus lower fall risk [39,40], while other features have improved diagnostic accu-
racy in musculoskeletal disorders and post-stroke impairments [41—43]. Beyond specific
conditions, kinematic features enhance standardization in movement assessment, which
is imperative when evaluating frailty and fall risk [44,45]. Collectively, this growing evi-
dence positions kinematic features as reliable indicators of patient health and functional
status [46,47], underscoring their importance for systematic investigation.

Despite the growing recognition of kinematic features as meaningful digital biomark-
ers, there has been limited synthesis of the specific features that are most relevant to
frailty and fall risk. Existing reviews have focused on broader healthcare applications of
MMC [30], on particular clinical conditions (e.g., neurodegenerative disease) [48], or on
alternative technologies, such as IMUs [49]. To address this gap, our primary aim was
to summarize the kinematic features measured through MMC that are associated with
fall risk and frailty. In addition, because the utility of these features depends on more
than their identification alone, we examined several practical and methodological consid-
erations specific to extracting kinematic features in this context. We explored how MMC
assessments were set up across studies to determine whether standardized approaches
are emerging or whether practices remain highly variable. We also examined whether
findings were reported in a stratified manner (e.g., by age, sex, body mass index, or disease
status), which allows for understanding whether MMC-derived features are generalizable
beyond narrow samples. Finally, we reviewed reported rates and reasons for incomplete or
poor-quality MMC recordings, since high levels of unusable data could limit feasibility in
clinical practice. Together, these secondary aims provide context on whether MMC-derived
kinematic features of frailty and fall risk are not only valid but also practical, generalizable,
and feasible for broader clinical use. A preliminary search of MEDLINE, Prospero, Google
Scholar, and Open Science Framework found no existing or ongoing systematic or scoping
reviews on this topic. Given the breadth of our objectives, a scoping review approach
was selected.

2. Methods
2.1. Study Design

This scoping review was conducted in accordance with the JBI manual for evidence
synthesis [50]. The research question was developed using the PEOs (population, exposure,
outcome, study design) framework. This review followed the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-SCR)
guidelines [51].

2.2. Primary Research Question

What markerless motion capture kinematic features are associated with frailty and/or
fall risk in adults?

2.3. Secondary Research Questions

1. How was the MMC technology set up for assessments (e.g., camera type, angle,
distance from participant)?

2. Were the results stratified by demographic or disease characteristics (sex, age, body
mass index, etc.) and, if so, what differences were reported?

3. What were the reported rates and reasons (if any) for poor or incomplete MMC data
recording, and what reasons were provided (if any)?
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2.4. Search Strategy

A search strategy was developed with guidance from a health sciences librarian, LD,
alongside clinical input from authors PT and VE. Text words from titles and abstracts
and relevant index terms were used to construct the initial MEDLINE search strategy,
which was then adapted for the other databases. Four databases (MEDLINE, CINAHL,
Embase, and Scopus) were searched with no date restrictions from inception to October
2024. The reference lists of all the included studies were also screened. All search results
were imported into Covidence systematic review management software (Veritas Health
Innovation, Melbourne, Australia) for screening and data management. A copy of the
search strategy can be found in the Supplementary Materials.

2.5. Eligibility Criteria
The Inclusion Criteria Consisted of the Following
Population: Adults (>18 years) of any health status.
Exposure: Movement assessment using MMC (all forms of MMC assessment included).
Outcome: A fall risk or frailty reference tool with published evidence of reliability
and validity.
Study Design: Original research articles.

2.6. Exclusion Criteria

Studies involving animals, pediatric populations, or cadaveric models were excluded.

Studies using only marker-based motion capture, IMUs, force plates, or radar systems
were excluded.

Literature reviews, conference abstracts without an associated full paper, or non-
English publications were excluded.

2.7. Study Selection

Following the search, all identified citations were collated and uploaded to Covidence,
where duplicate records were removed. In accordance with the JBI manual for evidence
synthesis, a pilot screening of 25 papers was conducted to assess inter-reviewer agree-
ment [50]. Once a 75% consensus was reached, title and abstract screening was started.
Two independent reviewers (EO, SI) carried out title-abstract screening and full-text review.
Reasons for the exclusion of articles at full text are recorded and summarized in Figure 1.
Disagreements were resolved through discussion or by a third independent reviewer (JB,
VE, PT). The results of the search and the study inclusion process are reported in full and
presented in a PRISMA-ScR flow diagram (Figure 1) [51].

2.8. Data Extraction

An initial extraction trial ensured that all relevant data were captured. Following
this, a single reviewer extracted data from all the included studies. To ensure consistency
and validity, a second reviewer independently verified 20% of the extracted studies. The
extraction tool was developed by the review team and included the following categories:
study characteristics: author, country, year, study design, and relevant conclusions; partici-
pant characteristics: age, health status, BMI, sex, sample size, and fall risk and/or frailty
status; technology characteristics: device used, number of devices, frame rate, resolution,
extraction methods, key-points, features, and additional equipment; assessment charac-
teristics: frailty or fall risk assessment used, administration details (location of testing,
set-up requirements), associated movement task performed with MMC (any test involving
motion capture with MMC was deemed eligible) and reported accuracy, specificity, and
sensitivity; and MMC parameters identified (number of parameters significantly related
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' Identification

Screening

Included

to fall risk/frailty and number of parameters non-significantly related to fall risk/frailty).
The significance or non-significance of parameters was extracted directly from the original
papers (no additional statistical tests were performed as part of this review).

Studies Identified From: Duplicates Removed
Databases (n=8048) —> Before Screening
Reference lists (n=2) n=3780

I

Studies Screened Studies Excluded

(n=4270) (n=3678)

|

Studies Screened for Full-

Text Eligibility ——{ Studies Excluded (n=553)

(n=592) Ineligible Motion Capture (n=288)
No Frailty/Fall Risk Assessment (n=107)
Ineligible Study Design (n=30)

No Parameters Assessed by MMC (n=11)
Abstract Only Publication (n=10)
Non-English Paper (n=6)

Studies Included

Unable to Retrieve Full-Text (n=2)

(n=39)

Figure 1. Flow diagram of this review. n: number.

2.9. Definition of Terms

During the screening and extraction process, the following terms and definitions were
used to guide the reviewers. Clinician was used to define any qualified practitioner who
conducted assessments (e.g., nurse, certified exercise professional, physician). Kinematic
feature was used to refer to any specific quantifiable aspect of movement (e.g., gait speed,
joint angle). Feature sets were a collection of quantifiable kinematic features, as grouped
by the original study authors (commonly used in papers about predictive modeling and
machine learning). Key points referred to specific anatomical landmarks used to estimate
human skeletal position during MMC [52]. A validated reference method was considered any
fall risk or frailty assessment supported by empirical evidence of reliability and validity.
Common reference methods of fall risk included the Timed Up and Go (TUG) [53], the
Berg Balance Scale (BBS) [54], and fall history [55]. Common reference methods of frailty
included Fried’s Frailty Phenotype (FFP) [56] and the Clinical Frailty Scale (CFS) [57].
We also included other methods of classification, provided they had reasonable evidence
supporting their validity and reliability in assessing fall risk or frailty (e.g., the Frailty
Meter [58]).
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3. Results

The search across all four databases yielded 8050 results. After removing 3780 du-
plicates (including 15 identified manually), 4720 articles remained for title and abstract
screening. Of these, 3682 were excluded, and 585 full-text articles were reviewed, with
37 meeting the inclusion criteria. An additional two studies were identified through refer-
ence list screening, resulting in 39 included studies. The study selection process is illustrated
in a PRISMA-ScR flow diagram (Figure 1), including reasons for full-text exclusions.

3.1. Study and Population Characteristics

The 39 included studies were published between 2011 and 2024, across 17 coun-
tries, including the United States of America (n = 8) [58-65], Canada (n = 4) [66—-69],
Japan (n=4) [70-73], Switzerland (n = 3) [39,40,74], China (n = 3) [75-77], Austria
(n=23) [78-80], Italy (n = 2) [81,82], Spain (n = 2) [83,84], Australia (n = 2) [85,86], and
India (n = 2) [87,88], with one study each from Belgium [89], France [90], Brazil [91], South
Korea [92], Malaysia [93], Taiwan [94], and Finland [95]. The study and population char-
acteristics are summarized in Table 1. Across studies, a total of 3114 participants were
included, with a mean age of 75.8 years (SD = 8.9); 42.6% of the participants were male.
The sample sizes ranged from 6 to 437, with a mean of 79 (SD = 107). Among the par-
ticipants, 565 (18.1%) were at risk of falls, and 550 (17.7%) were classified as frail. Most
studies (n = 21) focused on older adults [40,59-64,67,73,75,77-80,82,88-90,92], while other
studies included clinical populations, such as stroke (n = 4) [83,85,86,94], Parkinson’s dis-
ease (n = 3) [71,76,84], dementia (n = 3) [66,67,69], heart failure (n = 1), chronic obstructive
pulmonary disease (n = 1) [58], and neuropsychological disorders (n = 1) [95]. Four studies
did not specify specific health statuses of their population, describing them as hospital
in-patients (n = 2) [39,74], bone clinic patients [65], and fallers/non-fallers [93]. One study
included a younger population of university students [70]. Only 12 (31%) studies reported
body mass index (BMI) [58,60,67,68,72,73,76-78,80,88,91,92], with an average of 25.0 kg/ m2.
One study specified the ethnicity of its participants, all of whom were Caucasian [63]. No
studies reported stratified findings by demographic characteristics.

Table 1. A summary of the included studies and their populations.

Study Characteristics Population Characteristics
Population
Sex Age at Risk of
Study Year FRorF N Health Status M/F Mean (SD) Falls or
Frail n (%)
o) C P
Patients a
[84] 2020 FR 97 with P 49/48 NR 67.8 (NR) NR 6 (6.2)
[89] 2016 FR 22  Older adults 5/172 82 (8) 22 (100)
[90] 2016 Both 60 Older adults 27/33 84 (5.2) 85.8(5.2)  82.6(47) 35 (58.3)
[85] 2019 FR 81 Stroke 43/48 62.8(12.3) 62.8(12.3) 634(156)  23(284)
sSurvivors
[91] 2023 FR 26 Older adults NR NR 66.1(38) 662 (3.9) 13 (50)
[81] 2014 FR 79 Older adults NR NR 26 (5) 76 (10) 32 (40.5)
[60] 2024 F 65  Older adults 16/49 56.0 (18.7) NR NR NR
[39] 2021 FR g0  ospital 12/18 83.3 (8.5) NR NR 21 (70)
in-patients
[40] 2019 FR 43 Older adults 16/27 83 (NR) NR NR 21 (48.8)
[96] 2017 FR Hospital 14/23 83.6 (NR) NR NR 21 (56.8)

in-patients
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Study Characteristics Population Characteristics
Population
Sex Age at Risk of
Study Year FRorF N Health Status M/E Mean (SD) Falls or
Frail n (%)
o C P
[78] 2015 FR 94 Olderadults 28/662  79.7 (6.4) NR NR 29 (30.9)
[79] 2014 FR 104 Older adults 34/70 80.7 (7.0) NR NR 68 (65.4)
[80] 2016 FR 94 Olderadults  32/622  80.6(6.9) NR NR 19 (20.2)
[82] 2016 F 30  Older adults 5/25 75.6 (7.5) NR NR 17 (56.8)
[70] 2023 FR 6 Usrt‘lll‘éifgy NR NR NR NR NR
[59] 2014 FR 12 Olderadults NR NR NR NR 7 (58.3)
[71] 2011  FR 30 Patlegg with 4160 683 () NR NR 15 (50)
[92] 2024 FR 106 Older adults 0/106 NR 742 (5.1) 766 (5) 22 (20.8)
[83] 2019 FR 437 Sfrti‘l’fsrs 224/2132 NR 483 (16.1) 433 (18.6) 18 (4.1)
MMU-FRiP: MMU-
non-fallers FRiP: 18/3
[93] 2024 FRO 65 N deley:  Mendeloy: NR NR 70.0 (8.6) 44 (67.7)
fallers 7/372
[66] 2020 FR 52 Olderadults 28/24 763 (8) NR NR 28 (53.8)
[67] 2022 FR 14 Olderadults 3/11 86.7 (6.2) NR NR NR
[6s] 2021 PR 51 tfla;;i‘zﬁa 23/28 763 (7.9) NR NR 51 (100)
VC: 82.5
Patients with (5.2)
[72] 2024 F a7 e 222/194 e o NR NR 417 (100)
(4.9)
[69] 2020 FR 32  Dementia 18/11 755(8.6) 783 (8.9) 17 (54.8)
[61] 2017  FR 23  Older adults 7/16 85.2 (NR) 13 (56.5)
[62] 2015 FR 19 Olderadults  9/102 87 (NR) NR
[64] 2013 FR 32 Olderadults 7/82 56.5 (11.5)  87.5(7.9) NR
[88] 2020 FR 37 Olderadults NR 283(6.8)  67.2(6.7) 16 (43.2)
[63] 2015 FR 16 Olderadults 7/9 85.8 (8.0) NR NR NR
[94] 2020 FR 15 Susrtfli’vksrs 13/2 58.6 (8.7) NR NR NR
[65] 2019  FR 30 B;‘;figﬂgc 0/30 NR 745(62)  80.8(9.2) 10 (33.3)
[73] 2019 F 402 Olderadults  136/2662  73.7 (7.5) NR NR 90 (22.4)
Patients with
[95] 2018 FR 224 neurological  144/80 67.5 (14) NR NR 45 (20.1)
disorders
[86] 2015 FR 30 Stroke 21/9 68 (15) NR NR NR
sSurvivors
[75] 2024 FR 41 Older adults 5/36 NR 774(53) 820 (74) 15 (36.6)
[76] 2023 F 52 fv?:}lfgg 24/28 655(89) 655(NR) 69 (NR) 32 (61.5)
Patients
[58] 2020 F 21 COPD NR 67.8 (10.7) NR NR NR
[77] 2023 FR 46 Older adults 15/31 714 (5.11) NR NR 10 (21.7)

2: only gender reported without sex specified, F: frailty, FR: fall risk, PD: Parkinson’s disease, COPD = chronic
obstructive pulmonary disease, O: overall, C: control, P: participant, NR: not reported, N: number, M: male, F:

female, SS: sample size, M: mean, SD: standard deviation.
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3.2. Technology Characteristics

The technology characteristics (addressing secondary research question one) of the
studies are summarized in Table 2. Kinect was the most commonly used MMC device
(n=30; 75% of studies), including iterations such as the Microsoft, Azure, and Xbox
360 Kinect systems [39,40,59,61-66,68,69,73,75-86,88-90,94-96]. Other studies used differ-
ent mobile devices and cameras [58,60,67,70,72]. One study did not specify device de-
tails [71]. Kinect-based skeletal tracking was the most frequently used extraction algorithm
(n =14) [59,63,65,66,68,73,75,77-80,85,89,90], followed closely by custom-made extraction
algorithms (n = 13) [39,40,61,62,64,70,76,82,83,86,88,95,96]. OpenPose software and Alpha-
Pose software (n = 4) were less commonly used [58,67,69,72]. One study used Google’s
MediaPipe [60], and another used Unity3D software (Unity Technologies, San Francisco,
CA, USA) [94]. Two studies did not report their pose estimation software [69,81]. Before
2020, Kinect accounted for 96% of the devices used; after 2020, other technologies became
more common, and Kinect devices only comprised 58% of the usage. The set-up between
studies varied widely, including sagittal plane motion capture (n = 5) [40,58,60,90,96] and
frontal plane motion capture (n = 12) [65,77-81,84,86,88,89,92,95] (the remainder of the
studies did not specify the plane of motion of MMC).

3.3. Assessment Characteristics

The assessment characteristics of the studies are summarized in Table 3. Most studies
(n=12) [59,69,72,76,81,84,85,89,90,94,96] used clinician-administered reference assessments
for fall risk or frailty, while five studies did not specify the assessor [58,70,75,93,95]. The Timed
Up and Go (TUG) test (n = 16) was the most frequently used validated reference measure
for assessing fall risk [62-64,67,75,82,85,86,89,90,94,96]. Gait analysis was the most commonly
employed MMC task or activity across all studies (n = 13) [61,62,64,66-68,71,72,77,83-85,91].
Most studies (n = 32) used clinical reference measures to assess frailty or fall
risk [58-60,62-64,67,70,72,75,76,78,80,81,84-86,89,90,93-96], while the remainder (n = 7) re-
lied on self-report reference measures [61,69,71,77,79,82,92].

3.4. Accuracy, Sensitivity, and Specificity

There was little consistency in the reporting of accuracy, sensitivity, and specificity
of MMC assessment. Only seven studies reported accuracy values [39,70,72,77,81,92,95],
which ranged from 70 to 84%, with an average of 76% (standard deviation: 6.4%). Five stud-
ies reported specificity (range 50-83%, mean 71% (SD: 13%)) [73,76,77,92,95]. Five studies
reported sensitivity (range 45-86%, mean 72% (SD: 16%)) [73,76,77,92,95].

3.5. Statistical Analyses Reported

Statistical analysis varied widely across the studies. Most commonly, the stud-
ies used forms of correlational analysis (n = 24) to compare kinematic features to
fall risk or frailty measures. The correlational statistics included Pearson’s correlations
(n=11) [58,62,66,67,73,78,80,82,83,88,89,97], Spearman’s correlations (n = 5) [65,71,73,86,89],
and intraclass correlation coefficients (n = 5) [60,63,72,86,90]. Two studies did not specify
the form of statistical correlation used; rather, the authors stated they used a form of “corre-
lation” [64,93]. Other studies (n = 23) used group comparison tests like the Student’s ¢-test
(n=10) [39,40,71,75,76,79,83,84,92,96], analysis of variance (ANOVA) (n = 4) [73,80,84,91],
multivariate ANOVA (n = 2) [40,96], analysis of covariance (n = 1) [78], the Wilcoxon rank
sum test (n = 3) [39,40,96], and the Mann-Whitney U test (n = 4) [65,71,75,76].

Regression or association statistical models were used 12 times across the included
studies. This included Poisson regression (n = 2) [66,69], hazard ratios (n = 1) [68], odds
ratios (n = 2) [71,85], linear regression (n = 1) [69], multivariable regression (n = 1) [86],
ordinal regression (n = 1) [85], and logistic regression (n = 4) [61,71,76,92].



Sensors 2025, 25, 5741

9 of 24

Table 2. Technology characteristics. A summary of the technology characteristics of the included studies.

Hardware MMC Set-Up
. n of Additional . . Features or
Study Device Devices Set-Up Equipment Algorithm Key Points Features Feature Set?
H:0.8m
Alvarez 2020 [84] Kinect v2 1 D:15 WBB, table, laptop NR NR 20 Features
Frontal plane
Bonnechere 2016 [89] Microsoft Kinect 1 Frontal plane .WBB’ table, Kmect-base.d NR 8 Features
display screen skeletal tracking
D:25m Kinect-based
Bourrelier 2016 [90] Kinect 1 A:20 degrees Chair with armrests 5S¢t NR 2 Features
. skeletal tracking
Sagittal plane
Bower 2019 [85] Microsoft Kinect 1 D:1.84.0m Table, laptop Kmect—base.d NR 9 Features
skeletal tracking
Camargos 2023 [91] Kinect 3 NR . Leap NR NR 20 Features
motion controller
Colagiorgio 2014 [81]  Microsoft Kinect 1 D:2m NR NR NR 80 Features
Frontal plane
Dehghan Rouzi Smartphones or . , L
2024 [60] Tablet cameras 1 Sagittal plane NR Google’s MediaPipe 32 14 Features
Dubois 2017 [96] Microsoft Kinect 1 D 4m Stopwatch Custom algorithm NR 21 Features
Sagittal plane
I—]ID' :14;1; 17 features
Dubois 2019 [40] Kinect 1 o NR Custom algorithm NR Set of Feature set + features
A:20 degrees
) 1-3 features
Sagittal plane
15 features
Dubois 2021 [39] Kinect v2 1 A: 20 degrees Tripod Custom algorithm NR Set of Feature set + features
2 features
D:2m Kinect-based
Ejupi 2014 [79] Microsoft Kinect 1 H: 0.8 m TV, tripod/table . NR 6 Features
skeletal tracking
Frontal plane
D:2m Kinect-based
Ejupi 2015 [78] Microsoft Kinect 1 H: 0.8 m Monitor NR 5 Features

Frontal plane

skeletal tracking




Sensors 2025, 25, 5741

10 of 24

Table 2. Cont.

Hardware MMC Set-Up
. n of Additional . . Features or
Study Device Devices Set-Up Equipment Algorithm Key Points Features Feature Set?
D:2m Kinect-based
Ejupi 2016 [80] Microsoft Kinect 1 H:0.8m TV screen . NR 8 Features
skeletal tracking
Frontal plane
Gianaria 2016 [82] Microsoft Kinect 1 II—)I 3 ﬁ NR Custom algorithm 25 7 Features
. Intel RealSense D:3.25m . . Set of
Kamahori 2023 [70] D435 2D camera 1 H1lm Tripod Custom algorithm NR 5 features Feature sets
. . D:35m . Kinect-based
Kargar 2014 [59] Microsoft Kinect 1 H12m Table, chair skeletal tracking 20 5 Features
Kataoka 2011 [71] Unspecified 1 NR NR Manual labeling NR 21 Features
camera
D:32m . .
Kim 2024 [92] Kinect 1 H:0.7m Table, chair, cone, Kinect-based 25 66 Features
balance pad skeletal tracking
Frontal plane
Latorre 2019 [83] Kinect v2 1 D:6m NR Custom algorithm 25 23 Features
Lim 2024 [93]
. . Ceiling Kinect-based
Mehdizadeh 2020 [66] Kinect V2 1 RFID tags . NR 30 Features
mount skeletal tracking
Mehdizadeh 2021 [68] Kinect 1 Ceiling RFID tags Kinect-based NR 12 Features
mount skeletal tracking
Motorola Moto Alphapose,
Mehdizadeh 2022 [67] G5 Play cell 2 D:1.1-2m IMUs OpenPose, NR 24 Features
phones and Detectron
iPod touch .
. . ! D:4m Tripod, floor Set of
Mizuguchi 2024 [72] sevent-h 1 H1m markers, chair OpenPose 25 45 features Feature sets
generation
Ng 2020 [69] Kinect V2 1 Icrfél:;% NR Openpose 13 7 Features
Phillips 2017 [61] Microsoft Kinect 1 NR NR Custom algorithm NR 3 Features
Rantz 2013 [64] Microsoft Kinect 1 Ceiling NR Custom algorithm NR 3 Features

mount
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Table 2. Cont.

Hardware MMC Set-Up
. n of Additional . . Features or
Study Device Devices Set-Up Equipment Algorithm Key Points Features Feature Set?
. . Ceiling .
Rantz 2015 [62] Microsoft Kinect 1 mount NR Custom algorithm NR 3 Features
. D:23m .
Shukla 2020 [88] Kinect 2 NR Custom algorithm 15 2 Features
Frontal plane
Stone 2015 [63] Microsoft Kinect 1 Ceiling NR Kmect—basgd NR 1 Features
mount skeletal tracking
. . D:2m PC-based computer Kinect-based
Sun 2019 [65] Microsoft Kinect 1 H1m and a display screen skeletal tracking NR 13 Features
Sun 2020 [94] Xbox 360 Kinect 1 Frontal plane Display Unity3D software NR 5 Features
. . . D:3m . Kinect-based
Takeshima 2019 [73]  Microsoft Kinect H:01m Tripod, laptop skeletal tracking 25 3 Features
Kinect Xbox 360
. (Kinect 1) and D:3m . Set of
Tripathy 2018 [95] Kinect Xbox One 2 Frontal plane NR Custom algorithm 20 7 features Feature sets
(Kinect 2)
Vernon 2015 [86] Kinect Xbox 360 1 Frontal plane Table, chair Custom algorithm 7 7 Features
Wang 2024 [75] Microsoft Kinect 1 NR Chair, tripod Klnect—basefi 25 142 Features
skeletal tracking
. . D:1.2-22m . .
Xie 2023 [76] Azure Kinect 1 H 1m Table, chair Custom algorithm 32 22 Features
.. Samsung . .
Zahiri 2020 [58] Galaxy Tablet 1 Sagittal plane Tripod, IMU OpenPose 3 20 Features
Zhang 2023 [77] Azure Kinect 1 D:0.8 m IMUs Kinect-based 32 8 Features

Frontal plane

skeletal tracking

D: distance from subject, H: height of camera, IMUs: Inertial measurement units, NR: not reported, n: number, WBB: Wii Balance Board, RFID: radio-frequency identification, PC:
personal computer, TV: television.
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Table 3. Assessment characteristics. A summary of assessment characteristics of the included studies.
Frailty/Fall Risk Reference Assessment (Non-MMC)
Study Type Reference Measure Administered By MMC Task/Activity
Alvarez 2020 [84] Clinical POMA Neurologist Gait analysis
Bonnechere 2016 [89] Clinical Tinetti, BBS, TUG, 30 s STS Clinical evaluation Video game
Bourrelier 2016 [90] Clinical TUG and gait speed PT STS
Bower 2019 [85] Clinical Step test, TUG, prospective fall monitoring PT and EP Gait analysis
Camargos 2023 [91] Self-report Fall history Self-report Gait analysis
Colagiorgio 2014 [81] Clinical Tinetti test Clinician Tinetti test
DehghanRouzi 2024 [60] Clinical Frailty meter assessment protocol Research staff 20's elbow 'ﬂex1on
and extension test
Dubois 2017 [96] Clinical TUG Healthcare professional TUG
Dubois 2019 [40] Clinical TUG Healthcare professional TUG
Dubois 2021 [39] Clinical Tinetti test, TUG PT Ambient monitoring
Ejupi 2014 [79] Self-report Fall history Self-report CSRT
Ejupi 2015 [78] Clinical 55TS, fall history Research staff 55TS
Ejupi 2016 [80] Clinical PPA and prospective fall reporting Research staff Choice reaction times
Gianaria 2016 [82] Self-report TUG, TFL Self-report TUG
Kamahori 2023 [70] Clinical Tinetti test NR Balance task
Kargar 2014 [59] Clinical Get up and go task Physician TUG
Kataoka 2011 [71] Self-report Fall history Self-report Gait analysis
Kim 2024 [92] Self-report Prospective fall monitoring Self-report TUG
Latorre [83] Clinical BBS NR Gait analysis
Lim 2024 [93] Clinical POMA and JHFRAT Unspecified TUG
Mehdizadeh 2020 [66] Self-report Prospective fall monitoring Research Staff Gait analysis
Mehdizadeh 2021 [68] Self-report Prospective fall monitoring Research Staff Gait analysis
Mehdizadeh 2022 [67] Clinical BBS, POMA, TUG Research staff Gait analysis
Mizuguchi 2024 [72] Clinical Clinical frailty scale Cardiologists Gait analysis
Ng 2020 [69] Self-report Prospective fall monitoring, POMA Research staff and healthcare professional Ambient monitoring
Phillips 2017 [61] Self-report Prospective fall monitoring Self-report Gait analysis

Rantz 2013 [64]
Rantz 2015 [62]
Shulka 2020 [88]
Stone 2015 [63]
Sun 2019 [65]

Clinical
Clinical
Clinical
Clinical
Clinical

BBS, TUG, SPPB, SLS, HGS, FAP
HGS, FRT, BBS, TUG, SPPB, SLS
55TS
TUG, HGS, BBS, MDRT
TUG, BBS, FES

Research staff
Research staff
“Expert”
Research staff
Research staff

Gait analysis
Gait analysis
55TS
Ambient monitoring
Video game
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Table 3. Cont.

Frailty/Fall Risk Reference Assessment (Non-MMC)

Study Type Reference Measure Administered By MMC Task/Activity
Sun 2020 [94] Clinical Biodex balance system and TUG PT and research staff Video game
Takeshima 2019 [73] Clinical Functional independence measure PT STS
Tripathy 2018 [95] Clinical BBS NR SLS
Vernon 2015 [86] Clinical Step test, TUG, FRT Assessor TUG
Wang 2024 [75] Clinical BBS, TUG NR TUG
Xie 2023 [76] Clinical Fried’s frailty criteria Movement disorder specialist MDS-UPDRS-III

20 s elbow flexion

and extension test

Zhang 2023 [77] Self-report Fall history Self-report Gait analysis
NR: not reported, TUG: Timed Up and Go, BBS: Berg Balance Scale, FRT: Functional Reach Test, HGS: habitual gait speed, SLS: single-leg stance, SPPB: short physical performance
battery, FAP: functional ambulation profile, MDS-UPDRS-III: Unified Parkinson’s Disease Ranking Scale part three, POMA: Tinetti Performance Oriented Mobility Assessment, JHFRAT:

John Hopkins Fall Risk Assessment Tool, TFI: Tilburg frailty indicator, STS: sit to stand, PT: physiotherapist, EP: exercise physiologist, IMU: inertial measurement unit, 5STS: five times sit
to stand, FES: Falls Efficacy Scale.

Zahiri 2020 [58] Clinical Fried’s frailty criteria Validated IMU assessment
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Agreement or effect size measures were used nine times across the included stud-
ies. This included Cohen’s d (n = 2) [58,75], Cohen’s kappa (n = 1) [72], Bland—-Altman
(n =2) [58,65], the Concordance index (n = 1) [68], confidence intervals (n = 1) [81], and
root mean square deviation (n = 1) [63].

There were six instances in which the studies used validation/predictive modeling
techniques. These included receiver operating characteristic curve analysis (n = 3) [76,77,95],
cross-validation techniques (n = 2) [59,70], and Shapley additive index analysis (n = 1) [77].

Other statistical methods reported in this review included interquartile range
(n=1) [85], Chi-squared test (n = 2) [76,92], Fisher’s exact probability test (n = 1) [71],
and the Shapiro-Wilk test (n = 1) [75].

3.6. Kinematic Features of Fall Risk

Fall risk was assessed in 83% (n = 33) of the included studies [39,40,59,61-71,74,75,77-
79,83-86,88-95,97]. Across these studies, a total of 285 kinematic features were identified
across ten different MMC tasks or activities. Gait analysis was the most frequently used
MMC task for fall risk (n = 12, 36%) [61,62,64,66-68,71,77,83-85,91]. The kinematic features
associated with fall risk are summarized in Figure 2. The number of features identified per
study ranged from 2 to 148, with a mean of 23.

Five unique studies reported significant associations between fall risk and gait
speed [62,64,71,83,84], stride length [62,64,83-85], and step width [66,69,83,84,91], all de-
rived from gait analysis. Among all the features examined, stride length was the only
one that consistently demonstrated significant associations with fall risk. The remaining
features, i.e., gait speed and step width, while significant in five studies, were also found
to be non-significantly related to fall risk in two unique studies ([66,68] for gait speed
and [68,85] for step width).

Step width, gait speed, and cadence were the most frequently reported kinematic
features related to fall risk, each reported in seven unique studies (regardless of significance).
Cadence was the most widely investigated non-significant parameter (n = 4) [66,68,84,85],
although it was also found to be significantly associated with fall risk in nearly the same
number of studies (n = 3) [67,69,83].

3.7. Kinematic Features of Frailty

Frailty was assessed in seven studies (18%) [58,60,72-74,76,82,90], identifying 47 fea-
tures across five different assessments. The kinematic features associated with frailty are
presented in Figure 3. The number of features identified per study ranged from 3 to 22,
with a mean of 9. There was limited consistency in the kinematic features investigated
across the seven studies. The only assessment that appeared in two studies [58,60] was
the 20 s arm flexion—extension task, with parameters measured during the task including
power, degradation of speed, power reduction, range of motion, and elbow flexion time.
These studies used different data collection methods, as listed in Table 3. There was no
further overlap between any other studies that investigated frailty.

3.8. Feature Sets

Six studies investigated feature sets associated with fall risk [59,70,77,81,93,95], while
two studies examined feature sets related to frailty [58,72]. These feature sets, composed
of multiple interdependent features, are presented in Table 4. For studies reporting more
than ten features, only the top ten are shown, based on the Shapley Additive Explanation
values [98]. The remaining included features can be found in Supplementary Table S1.
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MMC Kinematic Features of Fall Risk

Reported as significant

Reported as non-significant

Gait Analysis
62 64 83 84
66 68
83
66

66 69 83 84 91 68
62 64 71 83 84 66
67 69 84 66

64 91 66

64 83 62

68 67

68 67

67 69 83 66 68 84

85 Stride length

69 eMOS-average

84 Double support time

69 eMOS-min

77 Gait speed variability

77 ML pelvic displacement

77 Vertical pelvic displacement
61 Change in gait speed

61 Change in stride length

83 Swing time

83 Trunk obliquity

83 Trunk tilt

83 Trunk rotation

83 Pelvic obliquity

83 Pelvic tilt

83 Pelvic rotation

83 Hip adduction-abduction
83 Hip flexion-extension

83 Hip height variation

83 Knee varus-valgus alignment
83 Knee flexion—extension

83 Knee height variation

83 Ankle height variation

66 eMOS-no.cross

66 eMOS-%time

68 Step length CV

68 Step time asymmetry angle
68 Step length asymmetry angle
68 Step width asymmetry angle
67 MOS

85 Step width

68 Gait speed

68 Step time

68 Step length

84 Stride time

69 Step width CV

69 Step time CV

85 Cadence

85 Step length asymmetry ratio
85 Kinect fast walk

85 6MWT speed

83 Step asymmetry

69 Symmetry index-step time
71 Step width alternation

71 Total time

71 Step number

-

p
Timed Up and Go

62 64 75 86 99 Step length
40 62 64 99 Gait speed

40 99 Median cadence
40 99 M cadence
40 99 Sit-down speed
40 99 Sit-down time
40 99 Get-up time
40 99 Get-up speed
62 64 Stride time
99 Turn time
99 CV of M cadence
99 CV of M step duration
99 Median step duration
99 M step duration
99 Step count
99 Walk time
40 M step length
40 Median step length
40 Median duration
40 M duration
40 CV of M length
40 CV of median length
40 CV of M duration
92 Turn Phase
75 Step width
75 Right knee angle walk
75 Right knee angle turn

85 99 75 86 Total time

75 Duration of walk

75 Step Count

75 Left knee angle walk
75 Duration of turn

75 Step duration

75 Sit to stand duration
75 Turn to sit duration
75 Leg angle during turn
86 Leg angle during walk
86 Flexion angle

99 Greatest walk width
99 Stop count

99 Turn width

-

Choice Reaching Reaction Test

80 Total time
80 Reaction time
80 Movement time

(" sit to Stand

94 Completion time

94 Speed

90 Back-to-sit trunk angle
94 M moving distance

94 Execution count

94 Total moving distance

Choice Stepping Reaction Test
79 92 80 Total time

79 80 Reaction time
79 80 Movement time
79 Step length
79 Step length variability

5 Sit to Stand
65 78 88

88

92 STS time

78 M sit-to-stand velocity

92 M STS time

92 M COG moving distance (AP)
78 STS velocity

78 M sitting time

78 M standing time

78 M stand-to-sit velocity

Ambient Monitoring

63 Average Gait Speed
39 M Step Length

39 Gait Speed

39 CV M Space

39 M Walking Pace

39 Time to Stand Up

39 Time to Sit Down

39 Sitting Speed

39 Total Lying Time

39 Total Sitting Time

39 Time Spent Outdoors

39 CV of Mean Step Length 39 Number of Transitions

J/

(. J
=
ory Organization Task A
92 C4 equilibrium score AP
92 Composite equilibrium score
§ 92 Vestibular ratio )
s )
Limits of Stability

92 Actual reach distance
92 Normalized reach distance

Custom Evaluation

65 EO sway path

65 EO ML sway range

65 EC sway path

65 EC sway area

65 EO AP sway range

65 EC ML sway range

65 Tandem sway path

65 Tandem sway area

65 Tandem AP sway range
65 Tandem ML sway range

89 Lateral bending
89 Angular velocity
89 Time

65 EO sway area

65 EO AP sway range
89 Flexion

89 Total angle

89 Length

89 Surface

89 Volume

Figure 2. MMC features of fall risk. A summary of the biomarkers that are associated with fall risk.

The number inside the square indicates the reference of the related study. AP: anterior—posterior,
EO: eyes open, M: mean, EC: eyes closed, COG: center of gravity, STS: sit to stand, 6 MWT: 6 min
walk test, eMOS: estimated margin of stability, MOS: cargin of stability, CV: Coefficient of variability,

Min: minimum.



Sensors 2025, 25, 5741

16 of 24

MMC Kinematic Features of Frailty

Reported as significant

Reported as non-significant

20s Elbow Flex/Ext Test

58 60 Power

58 60 Range of motion

58 60 Power reduction

58 60 Elbow flexion time
58 Rise time
58 Speed reduction
60 Flexion time variability
60 Extension time variability
58 CV of elbow flexion time
58 CV of elbow extension time

~

(" 20s Elbow Flex/Ext Test - Dual Task

60 Flexion time

60 Power

60 Range of motion

60 Power reduction

60 Flexion time variability
60 Extension time variability

Sit to Stand

76 Coronal plane angle
76 Coronal plane angle per height

AN

MDS-UPDRS

Finger tapping
76 Frequency
76 Amplitude
76 Amplitude decrement rate
76 Speed
76 Speed decrement rate
76 Frequency decrement rate

Hand Grasping
76 Amplitude
76 Amplitude decrement rate
76 Speed
76 Speed decrement rate
76 Frequency
76 Frequency decrement rate

Toe Tapping

76 Frequency
76 Amplitude
76 Amplitude decrement rate

76 Coronal plane angle per body mass )

Timed Up and Go

73 Total time

73 Walking time

73 Covered distance

73 Walking speed

73 Swing time

73 Double support time
73 Torso inclination angle

N\

Leg Agility

76 Lifting speed
76 Falling speed

76 Amplitude

76 Lifting speed

76 Falling speed

76 Frequency

76 Amplitude decrement rate

J

Figure 3. MMC features of frailty. MMC features associated with frailty. The number inside each
square represents the reference. CV: coefficient of variability, MDS-UPDRS: Unified Parkinson’s
Disease Ranking Scale, Flex-ext: flexion—extension, sec: second.

Table 4. Feature sets. Only studies that examined a defined set of features are included in this table.

The top ten features are reported here, as ranked by the SHAP index.

Reference

Fall Risk
or Frailty?

MMC
Task/Activity

# of Features

Top 10 Features

Colagiorgio 2014 [81]

Fall risk

Tinetti test

Maximum amplitude of chest pitch,
velocity of the steps, chest pitch
during standing from chair, standing
eyes open-Ks (postural control),
standing eyes open SD, sit down
chest pitch, standing eyes open mean
velocity, sternal nudge changes in txc
(postural control)

Kamahori 2023 [70]

Fall risk

Clinical test of
sensory interaction
and balance

M displacement of the center of
gravity, the instantaneous max
displacement of the center of gravity,
the M displacement before and after
the center of gravity, the
instantaneous max displacement
before and after the center of gravity,
the variance in the arm swing width

Kargar 2014 [59]

Fall risk

TUG

Number of steps, duration of each
step, number of steps in turning
phase, distance between two elbows,
angle between the legs, right and left
knee angles
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Table 4. Cont.

Fall Risk MMC
Reference or Frailty? Task/Activity # of Features Top 10 Features
Lim 2024 [93] Fall risk TUG 4 Ave step time, cadence, ave stride

time, ave stance time

Mizuguchi 2024 [72]

Gait speed, total gait time, spine
angle in frontal walking, stance phase
time, elbow angle (median), ankle
Frailty Gait analysis 45 swing speed (max), heel angle (min),
trajectory of the ankle distance (max),
ankle lift speed (max), cornering
time...*

Tripathy 2018 [95]

Zero crossing rate, SLS duration,
Fall risk BBS 7 spectral entropy, disease, gender, fall
history, postural deviation

Range of motion, percentage of

20's arm decline in power, flexion time, flexion
Zahiri 2020 [58] Frailty flexion—extension 5 ecine I power, 1exio & Hex1o
test time variability, extension
time variability
Step frequency, BMI, gait cycle
Zhang 2023 [77] Fall risk Gait analysis 20 variability, hypertension, eye diseases,

dyslipidemia, age, CV disease,
diabetes, stride CV...*

M: mean, max: maximum, ave: average, SD: standard deviation, min: minimum, SLS: single-leg stance. * The full
feature set can be found in Supplementary Table S1.

3.9. Rates of Errors in Recording

Seven studies (18%) using Kinect video recordings excluded 68 of 1147 participants
due to issues such as participant non-adherence to protocol, incomplete data capture, or
failure to convert recordings into usable key point data [60,66,72,73,76,78,84]. The post hoc
exclusion rates across these studies ranged from 2 to 15%, with a mean of 8%. These studies
did not give specifics as to why there were poor rates of recording or data conversion.

An additional four studies (10%) using ambient monitoring with the Kinect device
also reported reasons for participant exclusion [61,63,68,69], including obstruction of the
legs by assistive devices (n = 2) [68,69] and difficulties distinguishing between participants
with similar physical characteristics (n = 2) [61,63]. However, none reported the number
of exclusions.

4. Discussion

This scoping review aimed to explore the kinematic features associated with fall risk
or frailty. We identified 332 unique kinematic features derived from MMC technologies
across 39 studies evaluating fall risk and/or frailty. Most studies (82%) focused on fall risk,
18% investigated frailty, and two studies (5%) examined both. While most studies involved
older adults, one study included a healthy university student population [70]. Gait analysis
was the most common assessment type (33% of the studies), and Microsoft Kinect was the
predominant hardware platform (75% of the studies). Among the 332 features, 85% were
related to fall risk, with minimal overlap in the reported parameters across studies. Gait
speed, stride length, and step width were the most consistently reported parameters for fall
risk, typically extracted during gait analysis or Timed Up and Go (TUG) tasks. In contrast,
frailty-related features were less consistent, with only two studies reporting overlapping
features: movement power, range of motion, degradation of speed, and elbow flexion time.
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This review is the first to synthesize the MMC kinematic features linked with frailty or fall
risk (Figures 2 and 3), providing a foundation for the design and advancement of future
MMC technologies. By highlighting these features and the practical considerations for
MMC integration into clinical practice, this review supports future research into MMC
strategies for frailty and fall risk assessment in at-risk individuals.

Our gait-predominant fall risk findings align with previous reviews on digital mobility
assessments using other movement sensors, like IMUs and depth cameras [49,99,100]. Often
referred to as the sixth vital sign [101], gait speed is a well-established predictor of falls and
mortality [102,103]. The prevalence of gait-based features in this review is consistent with
IMU-focused reviews, including that by Ruiz-Ruiz et al., which emphasized gait speed,
step time variability, and stride length as key fall risk markers [49]. Our review extends
these findings to MMC systems. Mirroring our own findings, this review also emphasizes
their use in broader functional assessments beyond gait alone, including lower-extremity
strength and balance [49]. When comparing the number of features present for fall risk
(Figure 2) versus frailty (Figure 3), it is evident that movement-based frailty identification
has been less studied than fall risk. There were only four frailty features (power, reduction
in power, elbow flexion time, and range of motion) that overlapped across studies, and all
were drawn from just two studies. This indicates that frailty is currently under-studied,
presenting a pressing need for more research in this area.

Beyond identifying features, our secondary aim was to evaluate practical and method-
ological aspects of MMC when used to assess frailty and fall risk. Here, we found con-
siderable heterogeneity. Set-up procedures were inconsistently reported, with 15 studies
omitting information about camera positioning and/or additional equipment requirements.
Reported capture distances ranged widely from 0.8 to 6 m, and recording planes varied,
though frontal-plane motion was the most common. Microsoft Kinect remained the pre-
dominant hardware platform, consistent with previous MMC reviews in rehabilitation [31],
neurodegenerative disease [48], and other patient populations [104]. However, as Lam
et al. [31] also observed, we noted a recent trend toward the use of commercially available
devices, such as smartphones and digital cameras, suggesting a gradual shift from the
historically dominant Kinect toward more scalable and accessible MMC tools.

Studies used between one and three devices to record motion, but limited reporting
hindered the assessment of how device number influenced the accuracy of kinematic fea-
ture extraction. The few studies that did report accuracy relied exclusively on single-device
setups [39,70,72,77,81,92,95]. Evidence from other contexts suggests that recording angle
can substantially affect predictive accuracy of joint angles, particularly at the ankle [105,106].
More research is therefore needed to evaluate the impact of device number, camera angle,
and recording plane on the accuracy of MMC-derived frailty and fall risk assessments.
While the use of multiple devices may enhance predictive performance, the added com-
plexity and resource requirements could create barriers to clinical implementation. Taken
together, the variability in hardware choice, set-up procedures, and reporting highlights the
lack of standardization in MMC-based frailty and fall risk research and limits comparability
across studies.

Error rates and data exclusion were inconsistently reported across studies, with only
28% specitying reasons for removing data [60,61,63,66,68,69,72,73,76,78,84]. Clear docu-
mentation of when and why data are excluded is important to support reproducibility
and guide algorithm refinement. Reporting of participant demographics was similarly
limited. While age and sex were commonly reported, only one study described participant
ethnicity [61]. Because MMC algorithms rely on predictive models trained on homogenous
populations, limited demographic data hinders the evaluation of whether features are
transferable to diverse groups [26]. As MMC-based assessments of frailty and fall risk
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advance, the systematic reporting of error and demographic information will strengthen
the validity, equity, and real-world applicability of MMC tools.

While advances in research on kinematic features of frailty and fall risk highlight
the potential of MMC, this review also identifies several methodological gaps that must
be addressed before widespread clinical adoption is feasible. First, our review revealed
limited standardization in device set-up and feature definitions, hindering cross-study
comparability and external validity. Second, while the majority of studies reported the
age (94%) and sex (84%) of participants, only one-third included BMI, and none stratified
outcomes by demographic characteristics such as sex or age, both of which might impact
MMC performance [107]. The absence of stratified analysis restricts our understanding of
how these tools function across diverse populations. Third, while all studies compared
MMC to validated clinical assessments (e.g., BBS or TUG) [54,55], some modified estab-
lished clinical threshold cutoffs (e.g., gait speed reduced to <0.65 m/s [90], rather than
the established cutoff of 0.8 m/s for community ambulation [108]) to optimize model
performance. Although this may improve diagnostic accuracy in specific settings, it risks
reducing generalizability and introducing algorithmic bias. Fourth, reporting of data qual-
ity was inconsistent. Only one-third of the studies explained participant exclusion or data
loss, limiting reproducibility. These limitations echo those identified in prior MMC re-
views [31,104] and reflect the early-stage nature of the field, where technical validation is
often prioritized over population-level evaluation.

Translating MMC into real-world practice will require progress on these gaps as well
as addressing additional practical barriers. At present, the only real-world implementation
identified in this review involved ceiling-mounted Kinect devices [61,63,68,69], a configu-
ration unlikely to be scalable in most clinical settings. Broader adoption will depend on
the development of standardized assessment protocols, simplified set-up procedures, and
solutions to technical challenges such as occlusion [26].

4.1. Future Directions

To strengthen the field and support clinical translation, future research should address
key priorities, including (i) advancement towards a standardized set of MMC kinematic
features for fall risk and frailty; (ii) a clear description of demographic factors and strat-
ified analyses by factors, such as clinical condition, body mass index, or sex [26,107], in
order to understand how these factors interact with MMC technology and enable tailored
assessments; (iii) clear reporting on technical failures or drop-outs to understand how
MMC functions in real-world settings and to improve algorithms; and (iv) enabling clinical
implementation, through external validation and user-friendly interfaces.

4.2. Limitations

This scoping review has several limitations. Although the search strategy was compre-
hensive and developed with a research librarian, relevant studies may have been missed. In
line with scoping review methodology, a formal risk of bias assessment was not conducted.
The small number of studies on frailty, combined with heterogeneous protocols and incon-
sistent terminology, limited our ability to draw definitive conclusions about MMC'’s role in
frailty assessment. Furthermore, in line with the early stage of the research, most studies
did not assess the same parameters. The inconsistent terminology used in the literature

7o

(e.g., “digital biomarker” vs. “kinematic feature” or “kinematic parameter,” “markerless
motion capture” vs. “marker-free motion capture”) also presented a challenge, which may

explain the large number of articles identified in the initial search.
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5. Conclusions

This scoping review identified 332 features associated with fall risk and frailty. Of
these, the most consistently identified as significant for fall risk are gait speed, stride
length, and step width extracted during the TUG. The key frailty parameters identified
include movement power, range of motion, degradation of speed, and elbow flexion time.
This review highlights the diversity of MMC-derived kinematic features used in fall risk
and frailty assessment. While fall risk has received more attention, both areas remain
ripe for future development. The lack of standardization in feature selection, reporting,
and demographic stratification limits comparability. Future research will benefit from
harmonizing methods, improving reporting, and adequately reporting data loss. Further
exploration of fall-risk and frailty MMC tools should occur in real-world settings, as this
will be important in advancing these remote, accessible, and objective assessments that
hold promise in supporting early detection and intervention across diverse populations.
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